Wicking of a liquid bridge connected to a moving porous surface

نویسندگان

  • A. D. Gat
  • H. K. Navaz
  • M. Gharib
چکیده

We study the coupled problem of a liquid bridge connected to a porous surface and an impermeable surface, where the gap between the surfaces is an externally controlled function of time. The relative motion between the surfaces influences the pressure distribution and geometry of the liquid bridge, thus affecting the shape of liquid penetration into the porous material. Utilizing the lubrication approximation and Darcy’s phenomenological law, we obtain an implicit integral relation between the relative motion between the surfaces and the shape of liquid penetration. A method to control the shape of liquid penetration is suggested and illustrated for the case of conical penetration shapes with an arbitrary cone opening angle. We obtain explicit analytic expressions for the case of constant relative speed of the surfaces as well as for the relative motion between the surfaces required to create conical penetration shapes. Our theoretical results are compared with experiments and reasonable agreement between the analytical and experimental data is observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Darcy’s Law-Based Model for Wicking in Paper-Like Swelling Porous Media

The wicking of liquid into a paper-like swelling porous medium made from cellulose and superabsorbent fibers was modeled using Darcy’s law. The work is built on a previous study in which the Washburn equation, modified to account for swelling, was used to predict wicking in a composite of cellulose and superabsorbent fibers. In a new wicking model proposed here, Darcy’s law for flow in porous m...

متن کامل

Numerical Analysis of Transient Heat Transfer in Radial Porous Moving Fin with Temperature Dependent Thermal Properties

In this article, a time dependent partial differential equation is used to model the nonlinear boundary value problem describing heat transfer through a radial porous moving fin with rectangular profile. The study is performed by applying a numerical solver in MATLAB (pdepe), which is a centered finite difference scheme. The thermal conductivity and fin surface emissivity are linearly ...

متن کامل

Effect of colloidal Particles associated with the liquid bridge in sticking during drying in Superheated Steam

It is very important in the design of a drying system is to evaluate sticking behaviour of the materials goes under drying. A new approach to the sticking issue is applied in this study by carrying out a sticking test for the liquid associated with the materials under study. It was found that the liquid bridge is responsible of the initial sticking of the materials to the contact surface and th...

متن کامل

Wettability of Liquid Mixtures on Porous Silica and Black Soot Layers

Sophisticated manipulation of surface roughness and solid surface energy are widely used to design super-hydrophobic layers. In this work, we designed highly porous silica layer with contact angle (CA) of 145°, and its robustness was promoted with thermal treatment. Wettability of coated layer is studied with CA measurement for different liquid surface tensions using diluted organi...

متن کامل

Wicking of Perfectly Wetting Liquids into a Metallic Mesh

Imbibition of liquids into porous media has significant importance to many processes. For example one application is the propellant management device (PMD), or liquid acquisition device (LAD), located within spacecraft tanks [1, 7]. The PMDs are designed to ensure gas free delivery of propellant during all mission accelerations. This is done by using a porous medium, a metallic mesh, which prev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012